Searching for Sequential Plans
Using Tabled Logic Programming

Roman Bartdk and Jindfich Vodrazka

Charles University in Prague, Faculty of Mathematics and Physics, Czech Republic

Abstract. Logic programming provides a declarative framework for mod-
eling and solving many combinatorial problems. Until recently, it was not
competitive with state of the art planning techniques partly due to search
capabilities limited to backtracking. Recent development brought more
advanced search techniques to logic programming such as tabling that
simplifies implementation and exploitation of more sophisticated search
algorithms. Together with rich modeling capabilities this progress brings
tabled logic programing on a par with current best planners. The paper
brings an initial experimental study comparing various approaches to
search for sequential plans in the Picat planning module.

Keywords: planning; tabling; iterative deepening; branch-and-bound

1 Introduction

Automated planning was an important area for Prolog. PLANNER [5] was de-
signed as a language for proving theorems and manipulating models in a robot,
and it is perceived as the first logic programming (LP) language. Nevertheless,
since the design of STRIPS planning model [6], planning approaches other than
LP were more successful. SAT-based planning [9] is probably the closest ap-
proach to logic programming that is competitive with best automated planners.

For decades the so called domain-independent planning has been perceived
as the major direction of Al research with the focus on “physics-only” planning
domain models. This attitude is represented by International Planning Compe-
titions (IPC) [8] that accelerated planning research by providing a set of stan-
dard benchmarks. On the other hand and despite the big progress of domain-
independent planners in recent years, these planning approaches are still rarely
used in practice. For example, it is hard to find any of these planners in areas
such as robotics and computer games. This is partly due to low efficiency of
the planners when applied to hard real-life problems and partly due to missing
guidelines about how to describe planning problems in such a way that they are
efficiently solvable.

IPC accelerated research in domain-independent planning by providing en-
codings (domain models) for many benchmark problems. On the other hand, as
everyone is using IPC benchmark problems to evaluate the planners, there has
not been almost any research about how to encode the planning problems effi-
ciently. Also, though the role of domain knowledge is well known in planning [4],

the domain-dependent planners were banned from IPC which further decreased
interest in alternative approaches to model and solve planning problems.

Recently, tabling has been successfully used to solve specific planning prob-
lems such as Sokoban [20], the Petrobras planning problem [2], and several plan-
ning problems used in ASP competitions [23]. This led to development of the
planner module of the Picat programming language. This general planning sys-
tem was applied to various domains in IPC and compared with best domain-
independent optimal planners [24] as well as best domain-dependent planners
[3]. In this paper we summarize the modeling and solving capabilities of Picat
and we focus on their deeper experimental comparison.

2 Background on Planning

Classical Al planning deals with finding a sequence of actions that change the
world from some initial state to a goal state. We can see Al planning as the task
of finding a path in a directed graph, where nodes describe states of the world
and arcs correspond to state transitions via actions. Let (s, a) describe the state
after applying action a to state s, if a is applicable to s (otherwise the function is
undefined). Then the planning task is to find a sequence of actions (a1, as, . .., ay)
called a plan such that, sy is the initial state, for each i € {1,...,n}, a; is
applicable to the state s;—; and s; = v(s;-1, a;), and, finally, s,, satisfies a given
goal condition. For solving cost-optimization problems, each action has assigned
a non-negative cost and the task is to find a plan with the smallest cost.

As the state space is usually huge, an implicit and compact representation
of states and actions is necessary. Since the time of Shakey, the robot [15, 6], a
factored representation of states is the most widely used. Typically, the state of
the world is described as a set of predicates that hold in the state or by a set of
values for multi-valued state variables. Actions are then describing changes of the
states in the representation, for example, actions make some predicates true and
other false or actions change values of certain states variables. The Planning
Domain Definition Language (PDDL) [13] is the most widely used modeling
language for describing planning domains using the factored representation of
states. This is also the language of IPC competitions.

In Picat we will preserve the state-transition nature of classical Al planning,
but instead of factored representation we will use a structured representation of
states. Like in the PDDL, each action will have pre-conditions verifying whether
the action is applicable to a given state. However, the precondition can be any
Picat call. The action itself will specify how the state should be changed; we will
give some examples later.

3 Background on Picat

Picat is a logic-based multi-paradigm programming language aimed for general-
purpose applications. Picat is a rule-based language, in which predicates, func-
tions, and actors are defined with pattern-matching rules. Picat incorporates

many declarative language features for better productivity of software devel-
opment, including explicit non-determinism, explicit unification, functions, list
comprehensions, constraints, and tabling.

In Picat, predicates and functions are defined with pattern-matching rules.
Picat has two types of rules: a non-backtrackable rule (also called a commitment
rule) Head,Cond => Body, and a backtrackable rule Head, Cond 7=> Body. In
a predicate definition, the Head takes the form p(ty,...,t,), where p is called
the predicate name, and n is called the arity. The condition Cond, which is
an optional goal, specifies a condition under which the rule is applicable. For
a call C, if C matches Head and Cond succeeds, then the rule is said to be
applicable to C'. When applying a rule to call C, Picat rewrites C into Body. If
the used rule is non-backtrackable, then the rewriting is a commitment, and the
program can never backtrack to C. However, if the used rule is backtrackable,
then the program will backtrack to C' once Body fails, meaning that Body will
be rewritten back to C, and the next applicable rule will be tried on C.

Briefly speaking, Picat programming is very similar to Prolog programming.
By providing features like functions, list comprehensions etc., Picat programs are
even more compact and declarative than equivalent Prolog programs. Moreover,
the possibility of explicit non-determinism and unification gives the programmer
better control of program execution to make the code even more efficient. More
details about the Picat language can be found in the Picat documentation [16].

3.1 Tabling

The Picat system provides a built-in tabling mechanism [21] that simplifies cod-
ing of some search algorithms. Tabling is a technique to memorize answers to
calls and re-using the answer when the same call appears later. Tabling im-
plicitly prevents loops and brings properties of graph search (not exploring the
same state more than once) to classical depth-first search used by Prolog-like
languages. Both predicates and functions can be tabled; linear tabling [21] is
used in Picat. In order to have all calls and answers of a predicate or a function
tabled, users just need to add the keyword table before the first rule. For a pred-
icate definition, the keyword table can be followed by a tuple of table modes
[7], including + (input), - (output), min, max, and nt (not tabled). These modes
specify how a particular attribute of the predicate should be handled. For a pred-
icate with a table mode declaration that contains min or max, Picat tables one
optimal answer for each tuple of the input arguments. The last mode can be nt,
which indicates that the corresponding argument will not be tabled [22]. Ground
structured terms are hash-consed [19] so that common ground terms are tabled
only once. For example, for three terms c(1,c(2,c(3))), c(2,c(3)), and c(3),
the shared sub-terms c(2,c(3)) and c(3) are reused from c(1,c(2,c(3))).
Mode-directed tabling has been successfully used to solve specific planning
problems such as Sokoban [20], and the Petrobras planning problem [2]. A plan-
ning problem is modeled as a path-finding problem over an implicitly specified
graph. The following code gives the framework used in all these solutions:

table (+,-,min)
path(S,Path,Cost), final(S) => Path = [], Cost = 0.

path(S,Path,Cost) =>
action(S,S1,Action,ActionCost),
path(S1,Pathl,Costl),
Path = [Action|Pathi],
Cost = Costl+ActionCost.

The call path(S,Path,Cost) binds Path to an optimal path from S to a final
state. The predicate final (8) succeeds if S is a final state, and the predicate
action encodes the set of actions in the problem.

3.2 Resource-Bounded Search

As mentioned in the previous section, the tabling mechanism supports solving
optimization problems, such as looking for the shortest path, using the table
modes min and max. When applied to the single-source shortest path problem,
linear tabling is similar to Dijkstra’s algorithm, except that linear tabling tables
shortest paths from the encountered states to the goal state rather than shortest
paths to the encountered states from the initial state. When looking for the
shortest path from a single initial state to some goal state only, such as in
planning, classical tabling may be too greedy as it visits the states that could
be farther from the initial state than the length of the shortest path from start
to goal. Resource-bounded search is a way to overcome this inefficiency.

Assume that we know the upper bound for the path length, let us call it a
resource. Each time, we expand some state, we decrease available resource by
the cost of the action used for expansion. Hence less quantity of resource will be
available for expansion of the next state (if action costs are positive). The idea
of resource-bounded search is to utilize tabled states and their resource limits to
effectively decide when a state should be expanded and when a state should fail.
Let ST denote a state with an associated resource limit, R. If R is negative, then
ST immediately fails. If R is non-negative and S has never been encountered
before, then S is expanded by using a selected action. Otherwise, if the same
state S has failed before and R’ was the resource limit when it failed, then S
is only expanded if R > R/, i.e., if the current resource limit is larger than the
resource limit was at the time of failure.

4 Planning in Picat

The Picat system has a built-in module planner for solving planning problems.
The planning problem is described as an abstract state transition diagram and
solved using techniques exploiting tabling. By abstraction we mean that states
and actions are not grounded, but described in an abstract way similar to model-
ing operators in PDDL. In this section we briefly introduce the planner module,
give an example of planning domain model in Picat, and describe available search
techniques to solve the planning problems.

4.1 The planner Module of Picat

The planner module is based on tabling but it abstracts away tabling from
users. For a planning problem, users only need to define the predicates final/1
and action/4, and call one of the search predicates in the module on an initial
state in order to find a plan or an optimal plan.

— final(S): This predicate succeeds if S is a final state.

— action(S,NextS, Action, ACost): This predicate encodes the state tran-
sition diagram of a planning problem. The state S can be transformed to
NextS by performing Action. The cost of Action is ACost, which must be
non-negative. If the plan’s length is the only interest, then ACost = 1.

These two predicates are called by the planner. The action predicate specifies
the precondition, effect, and cost of each of the actions. This predicate is normally
defined with nondeterministic pattern-matching rules. As in Prolog, the planner
tries actions in the order they are specified. When a non-backtrackable rule is
applied to a call, the remaining rules will be discarded for the call.

4.2 Modeling Example

To demonstrate how the planning domain is encoded in Picat, we will use the
Transport domain from IPC’14. Given a weighted directed graph, a set of trucks
each of which has a capacity for the number of packages it can carry, and a set
of packages each of which has an initial location and a destination, the objective
of the problem is to find an optimal plan to transport the packages from their
initial locations to their destinations. This problem is more challenging than the
Nomystery problem that was used in IPC’11, because of the existence of multiple
trucks, and because an optimal plan normally requires trucks to cooperate. This
problem degenerates into the shortest path problem if there is only one truck
and only one package. We introduced the Picat model of this domain in [24],
where other examples of domain models are given.

A state is represented by an array of the form {Trucks,Packages}, where
Trucks is an ordered list of trucks, and Packages is an ordered list of waiting
packages. A package in Packages is a pair of the form (Loc,Dest) where Loc
is the source location and Dest is the destination of the package. A truck in
Trucks is a list of the form [Loc,Dests,Cap], where Loc is the current location
of the truck, Dests is an ordered list of destinations of the loaded packages on
the truck, and Cap is the capacity of the truck. At any time, the number of
loaded packages must not exceed the capacity.

Note that keeping Cap as the last element of the list facilitates sharing, since
the suffix [Cap], which is common to all the trucks that have the same capacity,
is tabled only once. Also note that the names of the trucks and the names of
packages are not included in the representation. Two packages in the waiting list
that have the same source and the same destination are indistinguishable, and as
are two packages loaded on the same truck that have the same destination. This

representation breaks object symmetries — two configurations that only differ by
a truck’s name or a package’s name are treated as the same state.
A state is final if all of the packages have been transported.

final ({Trucks, [1}) =>
foreach([_Loc,Dests|_] in Trucks)
Dests == []
end.

The PDDL rules for the actions are straightforwardly translated into Picat
as follows.

action({Trucks,Packages},NextState,Action,ACost) 7=>
Action = $load(Loc), ACost = 1,
select([Loc,Dests,Cap] ,Trucks,TrucksR),
length(Dests) < Cap,
select ((Loc,Dest) ,Packages,PackagesR),
NewDests = insert_ordered(Dests,Dest),
NewTrucks = insert_ordered(TrucksR, [Loc,NewDests,Capl),
NextState {NewTrucks,PackagesR},
action({Trucks,Packages},NextState,Action,ACost) 7=>
Action = $unload(Loc), ACost = 1,
select ([Loc,Dests,Cap] ,Trucks,TrucksR),
select (Dest,Dests,DestsR),
NewTrucks = insert_ordered(TrucksR, [Loc,DestsR,Capl),
NewPackages = insert_ordered(Packages, (Loc,Dest)),
NextState = {NewTrucks,NewPackages}.
action({Trucks,Packages},NextState,Action,ACost) =>
Action = $move(Loc,NextLoc),
select([Loc|Tail] ,Trucks,TrucksR),
road (Loc,NextLoc,ACost),
NewTrucks = insert_ordered(TrucksR, [NextLoc|Taill),
NextState = {NewTrucks,Packages}.

For the load action, the rule nondeterministically selects a truck that still has
room for another package, and nondeterministically selects a package that has
the same location as the truck. After loading the package to the truck, the rule
inserts the package’s destination into the list of loaded packages of the truck. Note
that the rule is nondeterministic. Even if a truck passes by a location that has
a waiting package, the truck may not pick it. If this rule is made deterministic,
then the optimality of plans is no longer guaranteed, unless there is only one
truck and the truck’s capacity is infinite.

The above model is very similar to the PDDL encoding available at IPC web
pages [8]. The major difference is the model of states that is a structure consisting
of two ordered lists. The ordering is used to obtain a unique representation
of states. The encoding can be further extended by adding control knowledge,
for example the predicate action can begin with a rule that deterministically
unloads a package if the package’s destination is the same as the truck’s location.
To exploit better the resource-bound search, one can also add heuristics to action
definition. The heuristic can estimate the cost-to-goal and it can be added to
actions through the following condition:

current_resource() - ACost >= estimated_cost(NewState).

The current_resource () is a built-in function of the planner giving the maximal
allowed cost-distance to the goal. Note that heuristic is a part of the domain
model so it is domain dependent.

We discussed some domain modeling principles in [3]. Basically, the Picat
planner module supports:

— structured state representation that is more compact than the factored rep-
resentation and allows removing symmetry between objects by representing
objects via their properties rather than via their names (see representation
of trucks and packages in the Transport domain),

— control knowledge that guides the planner via ordering of actions in the
model and using extra conditions to specify when actions are applicable
(for example, always unload the package when the truck is at the package
destination),

— action symmetry breaking by modeling possible action sequences via a non-
deterministic finite state automaton (for example, load the truck and move
it somewhere for further loading or unloading before assuming actions of
another truck),

— heuristics that estimate the cost-to-goal and can be domain dependent (do-
main independent heuristics can be used as well).

4.3 Search Techniques

The planning-domain model is specified as a set of Picat rules that are explored
by the Picat planner. This planner uses basically two search approaches to find
optimal plans. Both of them are based on depth-first search with tabling and
in some sense they correspond to classical forward planning. It means that they
start in the initial state, select an action rule that is applicable to the current
state, apply the rule to generate the next state, and continue until they find a
state satisfying the goal condition (or the resource limit is exceeded).

The first approach starts with finding any plan using the depth first search. The
initial limit for plan cost can (optionally) be imposed. Then the planner tries to
find a plan with smaller cost so a stricter cost limit is imposed. This process is
repeated until no plan is found so the last plan found is an optimal plan. This
approach is very close to branch-and-bound technique [12]. Note that tabling is
used there — the underlying solver remembers the best plans found for all visited
states so when visiting the state next time, the plan from it can be reused rather
than looked for again. This planning algorithm is evoked using the following call:

best_plan_bb(+InitState,+CostLimit,-Plan,-PlanCost)

This is where the user specifies the initial state and (optionally) the initial cost
limit. The algorithm returns a cost-optimal plan and its cost. This approach can
be also used to find the first plan using the call plan(+S,+L,-P,-C).

Despite using tabling that prevents re-opening the same state, this approach
still requires good control knowledge to find the initial plan (otherwise, it may
be lost in a huge state space) or alternatively some good initial cost limit should
be used to prevent exploring long plans.

The second approach exploits the idea of iteratively extending the plan length
as proposed first for SAT-based planners [9]. It first tries to find a plan with cost
zero. If no plan is found, then it increases the cost by 1. In this way, the first
plan that is found is guaranteed to be optimal. Unlike the IDA * search algorithm
[10], which starts a new round from scratch, Picat reuses the states that were
tabled in the previous rounds. This planning algorithm is evoked using the call:

best_plan(+InitState,+CostLimit,-Plan,-PlanCost)

This approach is more robust with respect to weak or no control knowledge, but
it has the disadvantage that it can only find the optimal plan, which could be
more time consuming than finding any plan.

Note that the cost limit in the above calls is used to define the function
current_resource () mentioned in the action rules. Briefly speaking the cost of
the partial plan is subtracted from the cost limit to get the value of the function
current_resource () that can be utilized to compare with the heuristic distance
to the goal.

5 Experimental Comparison

The Picat planner uses a different approach to planning so it is important to show
how this approach compares with current state-of-the-art planning techniques
and to understand better the Picat search procedures. In [24] we compared
the Picat planer with SymBA [18] — the domain-independent bidirectional A*
planner which won the optimal sequential track of IPC’14. As the Picat planner
can exploit domain-dependent information, in [3] we compared the Picat planner
with leading domain-dependent planners based on control rules and hierarchical
task networks (HTN). We will summarize these results first and then we will
present a new experimental study comparing the search approaches in Picat.

5.1 Comparison to Automated Planners

Optimal Domain Independent Planners. We have encoded in Picat most
domains used in the deterministic sequential track of TPC’14. All of the encod-
ings are available at: picat-lang.org/ipc14/. The Picat planner was using the
iterative deepening best_plan/4 planning algorithm. We have compared these
Picat encodings with the IPC’14 PDDL encodings solved with SymBA. Table
1 shows the number of instances (#insts) in the domains used in IPC’14 and
the number of (optimally) solved instances by each planner. The results were
obtained on a Cygwin notebook computer with 2.4GHz Intel i5 and 4GB RAM.
Both Picat and SymBA were compiled using g++ version 4.8.3. For SymBA, a

setting suggested by one of SymBA’s developers was used. A time limit of 30
minutes was used for each instance as in IPC. For every instance solved by both
planners, the plan quality is the same. The running times of the instances are
not given, but the total runs for Picat were finished within 24 hours, while the
total runs for SymBA took more than 72 hours.

Table 1. The number of problems solved optimally.

| Domain [# insts|Picat[SymBA|

Barman 14| 14 6
Cave Diving 20| 20 3
Childsnack 20 20 3

Citycar 20| 20 17

Floortile 20 20 20

GED 20| 20 19

Parking 20| 11 1

Tetris 17| 13 10

Transport 20 10 8

[Total | 171] 148] 87|

Domain Dependent Planners. We took the following domains: Depots, Zeno-
travel, Driverlog, Satellite, and Rowvers from IPC’02. The Picat encodings are
available at: picat-lang.org/aips02/. We compared Picat with TLPlan [1],
the best hand-coded planner of IPC’02, TALPlanner [11] another good planner
based on control rules, and SHOP2 [14], the distinguished hand-coded planner
of IPC’02 using HTN. Each of these planners used its own encoding of planning
domains developed by the authors of the planners.

All planners found (possibly sub-optimal) plans for all benchmark problems
and the runtime to generate plans was negligible; every planner found a plan in
a matter of milliseconds. Hence we focused on comparing the quality of obtained
plans that is measured by a so called quality score introduced in IPC. Briefly
speaking the score for solving one problem is 1, if the planner finds the best plan
among all planners; otherwise the score goes down proportionally to the quality
of the best plan found. The higher quality score means an overall better system.

For TLPIlan, TALPlanner, and SHOP2 we took the best plans reported in the
results of IPC’02. Taking in account the nature of planners and their runtimes,
there is a little hope to get better plans when running on the current hardware.
For the Picat planner we used the branch-and-bound best_plan_bb/4 planning
algorithm. Table 2 shows the quality scores when we gave five minutes to the
Picat planner to improve the plan (running under MacOS X 10.10 on 1.7 GHz
Intel Core i7 with 8 GB RAM).

The results show that the Picat planner is competitive with other domain-
dependent planners and that it can even find better plans. In [3] we also demon-

Table 2. Comparison of quality scores for the best plan (5 minutes)

| Domain [# insts[Picat[TLPIan[TALPIanner[SHOP2‘

Depots 22(21.94| 19.93 20.52| 18.63
Zenotravel 20(19.86| 18.40 18.79| 17.14
Driverlog 20| 17.21| 17.68 17.87| 14.16

Satellite 20(20.00| 18.33 16.58| 17.16

Rovers 20/20.00| 17.67 14.61] 17.57

[Total | 102[99.01] 92.00] 88.37] 84.65]

strated that the Picat domain models are much smaller than domain models
using control rules and are much closer in size to the PDDL models.

5.2 Comparison of Search Techniques

In the second experiment we focused on comparing two search approaches to find
cost-optimal plans in Picat, namely branch-and-bound and iterative deepening.
When looking for optimal plans, the hypothesis is that iterative deepening re-
quires less memory and time because branch-and-bound explores longer plans
and hence may visit more states. On the other hand, the advantage of branch-
and-bound is that it can find some plan even if finding (and proving) optimal
plan is hard (recall, that iterative deepening returns only optimal plans). So the
second hypothesis is that when looking for any plan, branch-and-bound could
be a better planning approach. Nevertheless, due to depth-first-search nature,
branch-and-bound requires good control knowledge to find an initial plan. The
final hypothesis is that if none or weak control knowledge is part of the domain
model then iterative deepening is a more reliable planning approach.

We used the following domains from the deterministic sequential track of
IPC’14 [8]: Barman, Cavediving, Childsnack, Citycar, Floortile, GED, Parking,
Tetris, and Transport. All of the encodings are available at: picat-lang.org/
ipc14/. The experiment run on Intel Core i5 (Broadwell) 5300U(2.3/2.9GHz)
with 4 GB RAM (DDR3 1600 MHz). For each problem, we used timeout of 30
minutes and memory limit 1 GB. We compared the following search procedures:

— plan(InitState,CostLimit, Plan, PlanCost),
— best_plan(InitState,CostLimit, Plan, PlanCost),
— best_plan_bb(UnitState,CostLimit, Plan, PlanCost),

using 99,999,999 as the initial cost limit (10,000 for the GED domain).

We first report the number of solved problems with respect to time and
memory consumed. Note that best_plan/4 and best_plan bb/4 return cost-
optimal plans while plan/4 returns some (possibly sub-optimal) plan. Figure 1
shows the number of solved problems within a given time. Figure 2 shows the
number of solved problems based on memory consumed.

The results confirm the first and second hypotheses, that is, iterative deep-
ening requires less time and less memory than branch-and-bound when solving

solved task cnt

solved task cnt

Fig. 2.

problems optimally, but branch-and-bound has the advantage of providing some
(possibly sub-optimal) plan fast. If looking for any plan then branch-and-bound

Planner comparison - all

- - best_plan
---best_plan_bb
—plan

1000

Time (sec)

Fig. 1. The number of solved problems within a given time.

Planner comparison - all

- - best_plan
---best_plan_bb
—plan

RAM (bytes)

The number of solved problems dependent on memory consumption.

also requires less memory.

Describing dependence of planner efficiency on the model is more tricky
as it is hard to measure model quality quantitatively. We annotated each in-
volved domain model by information about using control knowledge and domain-
dependent heuristics in the model. Table 3 shows the annotation of domain

models based on these two criteria.

Based on Table 3 we can classify the Picat domain models into following

groups:

— The Picat domain model for Barman is probably closest to the PDDL encod-
ing; it only uses the structured representation of states, which alone seems
to be advantage over PDDL as Table 1 shows. GED uses a bit specific model
based on a PDDL model different from that one used in the IPC — this model
uses some macro-actions — and hence it is not really tuned for Picat.

Table 3. The properties of domain models.

| Domain [control knowledge[heuristics

Barman no no
Cave Diving strong no
Childsnack strong no
Clitycar no yes
Floortile strong no
GED macro yes
Parking weak yes
Tetris no yes
Transport weak yes

— Clitycar and Tetris are domains where useful admissible heuristics are used,
but no control knowledge is implemented to guide the planner.

— The Picat domain models for Parking and Transport use some weak control
knowledge in the form of making selection of some actions deterministic (see
the example earlier in the paper). They also exploit admissible heuristics.

— Cave Diving, Childsnack, and Floortile are domains, where we use strong
control knowledge and no heuristics. Control knowledge is used there to
describe reasonable sequencing of actions either via finite state automata or
macro-actions. The domain model for Cave Diving is described in detail in
[3]; the domain model for Childsnack is almost deterministic as this problem
does not require real planning; and the domain model for Floortile uses
macro-actions to force reasonable action sequences, see [24] for details.

From each class of domain models we selected one representative to demon-
strate how different solving approaches behave (the other domains gave similar
results). Figure 3 shows the number of solved problems for these representa-
tives. If the Picat domain model is very close to the original PDDL model,
then iterative deepening has a clear advantage when finding optimal plans, see
the Barman domain. This corresponds to popularity of this solving approach in
planners based on SAT techniques [9]. In case of Barman the branch-and-bound
approach can still find some plans as the model itself guides the planner reason-
ably well (there are no extremely long plans). However, for the GED domain,
only iterative deepening can find (optimal) plans while branch-and-bound was
not able to find any plan due to being lost in generating extremely long plans
not leading to the goal.

Adding admissible heuristics makes iterative deepening even more successful,
see the Tetris domain. Finding optimal plans by iterative deepening is close to
finding any plan by branch-and-bound. Also the gap between finding any plan
and finding an optimal plan by branch-and-bound is narrower there. Obviously,
this also depends on the quality of first plan found.

An interesting though not surprising observation is that adding even weak
control knowledge makes finding any plan by branch-and-bound much more
successful and decreases further the gap between iterative deepening and branch-

solved task cnt

solved task cnt

solved task cnt

solved task cnt

Fig. 3. The number of solved problems within a given time for specific domains.

barman

FTTTTTTT - - best_plan
- J --=best_plan_bb
gt —plan
'
'
'
ofr .
| i
{
0 100 200 00 a0 s00 o0 70 a0 0
Time (sec)
tetris
e B
- - best_plan
i ---best_plan_bb
’ —plan
0 0 0 &0 500 1000 1200
Time (sec)
parking
2|
15| - - best_plan
---best_plan_bb
—plan
1
0) w© 3 % 100 120
Time (sec)
childsnack
2|
15| Y Pad
.
-
B
10 -0 :
;
.-
'
.
Lt - - best_plan
S --=best_plan_bb
J —plan

Time (sec)

oot

and-bound when looking for optimal plans, see the Parking domain. The role
of control knowledge is even more highlighted in the Childsnack domain, which
shows that strong control knowledge has a big influence on efficiency of branch-
and-bound. Longer runtimes of iterative deepening are caused by exploring short
plans that cannot solve the problem before discovering the necessary length of
the plan to reach the goal. Still control knowledge helps iterative deepening to
find a larger number of optimal plans though it takes longer than for branch-
and-bound.

The experimental results justify the role of control knowledge for solving
planning problems and confirm the last hypothesis that control knowledge is
important for the branch-and-bound approach especially if the dead-ends can
be discovered only in very long plans.

6 Summary

This paper puts in contrast two approaches for searching for sequential plans,
iterative deepening used in [24] and branch-and-bound used in [3]. We demon-
strated that the modeling framework proposed for the Picat planner module is
competitive with state-of-the-art planning approaches and we showed some rela-
tions between the modeling techniques and used search algorithms. In particular,
we demonstrated the role of control knowledge in planning and we showed that
control knowledge is more important for branch-and-bound though it also con-
tributes to efficiency of iterative deepening. The role of heuristics is known in
planning as for a long time heuristic-based forward planners are the leading
academic planners. Note however that Picat is using heuristics in a different
way. Rather than guiding the planner to promising areas of the search space,
the heuristics are used to cut-off sub-optimal plans earlier. Hence the role of
heuristics is stronger for iterative deepening than for branch-and-bound.

This paper showed some preliminary results on the relations between various
modeling and solving techniques for planning problems. The next step is a deeper
study of influence of various modeling techniques on efficiency of planning.

Acknowledgments. Research was supported by the Czech Science Foundation
under the project P103-15-19877S. The authors would like to thank Agostino
Dovier and Neng-Fa Zhou for providing some of the domain models in Picat.

References

1. Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search
control knowledge for planning. Artificial Intelligence, 116(1-2):123-191, 2000.

2. Roman Bartak and Neng-Fa Zhou. Using tabled logic programming to solve the
Petrobras planning problem. Theory and Practice of Logic Programming, 14(4-
5):697-710, 2014.

3. Roman Bartdk, Agostino Dovier, Neng-Fa Zhou. On modeling planning problems
in tabled logic programming. In Proceedings of the 17th International Symposium
on Principles and Practice of Declarative Programming — PPDP’15, 32-42, 2015.

4. Patrik Haslum and Ulrich Scholz. Domain knowledge in planning: Representation
and use. In ICAPS Workshop on PDDL, 2003.

5. Carl Hewitt. Planner: A language for proving theorems in robots. In Proceedings of
IJCAI 295-302, 1969.

6. Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving. Artificial Intelligence, 2 (3-4):189-208,
1971

7. Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via mode-
directed tabling. Software: Practice and Ezperience, 38(1):75-94, 2008.

8. International Planning Competitions web site, http://ipc.icaps-conference.
org/, Accessed April 5, 2015.

9. Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of FCAI,
359-363, 1992.

10. Richard E. Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, 27(1):97-109, 1985.

11. Jonas Kvarnstrom and Martin Magnusson. Talplanner in the third international
planning competition: Extensions and control rules. J. Artificial Intelligence Re-
search (JAIR), 20:343-377, 2003.

12. A. H. Land and A. G. Doig. An automatic method of solving discrete programming
problems. Econometrica 28(3):497-520, 1960.

13. Drew McDermott. The planning domain definition language manual. CVC Report
98-003, Yale Computer Science Report 1165, 1998.

14. Dana S. Nau, T'sz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan
Wu, and Fusun Yaman. SHOP2: an HTN planning system. J. Artificial Intelligence
Research (JAIR), 20:379-404, 2003.

15. Nils J. Nilsson. Shakey The Robot, Technical Note 323. AI Center, SRI Interna-
tional, 333 Ravenswood Ave., Menlo Park, CA 94025, Apr 1984.

16. Picat web site, http://picat-lang.org/, Accessed July 3, 2015.

17. TLPlan web site, http://www.cs.toronto.edu/tlplan/, Accessed April 5, 2015.
18. Alvaro Torralba, Vidal Alcazar, and Daniel Borrajo. Symba: A symbolic bidirec-
tional a planner. In The 2014 International Planning Competition,105-109, 2014.
19. Neng-Fa Zhou and Christian Theil Have. Efficient tabling of structured data with
enhanced hash-consing. Theory and Practice of Logic Programming, 12(4-5):547—

563, 2012.

20. Neng-Fa Zhou and Agostino Dovier. A tabled Prolog program for solving Sokoban.
Fundamenta Informaticae, 124(4):561-575, 2013.

21. Neng-Fa Zhou, T. Sato, and Y.-D. Shen. Linear tabling strategies and optimiza-
tions. Theory and Practice of Logic Programming, 8(1):81-109, 2008.

22. Neng-Fa Zhou, Y. Kameya, and T. Sato. Mode-directed tabling for dynamic pro-
gramming, machine learning, and constraint solving. In Proceedings of 22nd IEEE
International Conference on Tools with Artificial Intelligence (ICTAI), 213-218,
2010.

23. Neng-Fa Zhou. Combinatorial Search With Picat. hitp://arziv.org/abs/1405.2538,
2014.

24. Neng-Fa Zhou, Roman Bartdk, Agostino Dovier. Planning as Tabled Logic Pro-
gramming. To appear in Theory and Practice of Logic Programming, 2015.

